Academic Course Description

BHARATH UNIVERSITY Faculty of Engineering and Technology Department of Electronics and Communication Engineering **BEC704-Antenna and Wave propagation 7th Semester, 2015-16 (Odd Semester)**

Course (catalog) description

This course introduces to the concepts and definitions of FUNDAMENTALS OF ANTENNA charges, currents, voltages, power, and energy.

Compulsory/Elective course : Compulsory

Credit hours	:	4 credits
Course Coordinator	:	Dr.E.Kanniga

:

Instructors

Name of tl instructor	e Class handling	Office location	Office Phone	Email (domain:@ bharathuniv.ac.in	Consultation
Dr.E.Kanniga	FINAL Year ECE	SA003		Kanniga.etc@bharathuniv.ac.in	9.00-9.50 AM
Mrs.M.Jasm	n FINAL Year ECE	SA003		jasmine.ece@bharathuniv.ac.in	12.45-1.15 PM

Relationship to other courses:

Pre – requisites : BPH101 Engineering Physics – I, Electromagnetic Fields and waves

Assumed knowledge : The students will have a physics background obtained at a high school (or equivalent) level.

Following courses : Application related subjects Mobile Communication and satellite Communication

Syllabus Contents

UNIT I BASIC ANTENNA CONCEPTS

Radiation Patterns, Beam solid angle, radiation intensity, Directivity, effective aperture, Antenna field zones, Polarization, impedance, cross field, Poynting vector. Friis Transmission formula, Duality of Antennas, Antenna and Transmission line, Radiation from a dipole antenna, Antenna temperature System temperature.

12

Page 2 of 8

UNIT II POINT SOURCES

Definition, Power patterns, Array of two point sources – Pattern multiplication, Broad side array, End fire array, n-isotropic array, Evaluation of null directions and maxima, Amplitude distributions. Concept of Phased arrays, Adaptive array, Basic principle of antenna Synthesis-Binomial array

UNIT III SMALL ANTENNAS:

Half wave dipole antenna radiated fields of short dipole, small loop and helical Antenna, monofilarmultifilar helix. Radiation resistance, Directivity and Design Feature. Half wave dipole: radiated fields and other feature. Numerical tool for antenna analysis

UNIT IV SPECIAL ANTENNAS:

Yagi uda Antenna, Tumstile antenna, Principle of frequency independent antennas –Spiral antenna, helical antenna, Log periodic. Modern antennas- Reconfigurable antenna, Active antenna, Dielectric antennas, rhombic antenna, Horn antenna, Reflector antennas and their feed systems, Micro strip antenna, Impedance and antenna measurements;

UNIT V WAVE PROPOGATION:

Ground wave propagation, Troposphere wave, wave- tilt of the surface wave, lonosphere propagation – effective permittivity and Conductivity of ionized gas, Reflection – Refraction of waves from ionosphere, regular – irregular variation of lonosphere, earth magnetic field, Faraday rotation, wave propagation in the lonosphere. Duct propagation, Critical frequency and Space propagation,

Total: 60 Periods

Text Books

- 1. John D Kraus, Ronald J Marhefka, Ahmad S Khan, *"Antenna and Wave Propagation"*, Tata McGraw Hill, 4th Edition, 2010.
- 2. R.L.Yadava, "Antennas and Wave Propagation", PHI, 2011

References

- 1. Constantine A.Balanis, *"Antenna Theory: Analysis and Design"*, Third Edition, John Wiley and Sons, 2012.
- 2. G.S.N. Raju, "Antennas and wave propagation", 1st Edition Pearson Education, 2012.
- 3. Robert S. Elliott, "Antenna Theory and Design", John Wiley and Sons, Revised Edition, 2007.
- 4. www.studynama.com/.../229-Antenna-wave-propagation-(AWP)-pdf-eb.
- 5. A.R.Harish, M.Sachidanada, "Antennas and Wave propagation", Oxford University

Computer usage: Used simulation too RFSIM99 to do analysis

Professional component

General	-	10%
Basic Sciences	-	20%
Engineering sciences & Technical arts	-	10%
Professional subject	-	60%

Broad area: Antenna and Wave Propagation | Electronics | Transmission Lines and Networks | Electromagnetic Fields and waves

12

12

12

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	August 1 st week	Session 1 to 14	2 Periods
2	Cycle Test-2	September 2 nd week	Session 15 to 28	2 Periods
3	Model Test	October 2 nd week	Session 1 to 45	3 Hrs
4	University	ТВА	All sessions / Units	3 Hrs.
	Examination			

Session	Topics	Problem solving (Yes/No)	Text / Chapter		
	UNIT I BASIC ANTENNA CONCEPTS				
1.	Radiation Patterns,	No	Chapter 2.4 / page no : 20		
2.	Beam solid angle,	Yes	Chapter 2.5 / page no : 23 Chapter 2.6 / page no : 25		
3.	radiation intensity,	No	Chapter 2.10 , 2.13 / page no : 26		
4.	Directivity, effective aperture,	Yes	29 Chapter 2.31 / page no : 60		
5.	Antenna field zones,	Yes	Chapter 2.34 / page no : 70		
6.	Polarization,	No	- Chapter 2.32 , 2.37 / page no : 61 79		
7.	impedance, cross field,	Yes	Chapter 2.35 / page no : 73		
8.	Pointing vector.	Yes	— Chapter 2.25 / page no : 48		
9.	Friis Transmission formula,	Yes			
10.	Duality of Antennas,	No	Chapter 2.26 / page no : 50		
11.	Antenna and Transmission line,	Yes	Chapter 2.64 / page no : 20		
12.	Radiation from a dipole antenna,	No			
13.	Antenna temperature System temperature.	No	Chapter 17.2 / page no : 774		
UNIT II	POINT SOURCES				
14.	Definition, Power patterns,	No	Chapter 3.1 , 3.2 / page no : 86 ,		
15.	Array of two point sources	No	- 87 Chapter 4.2 / page no : 118		
16.	Pattern multiplication, Broad side array,	No	4.3, 4.6 / page no: 127, 137.		
17.	End fire array,	No	Cha2.64c / page no: 138. 4.9 / 196		
18.	n-isotropic array,	No	4.7 / 185		
19.	Evaluation of null directions and maxima,	age 3 of 8 Yes	 Chapter 11.10/page no : 496		

	Amplitude distributions.			
20.	Concept of Phased arrays,	No	Chapter 11.13/page no : 496 Chapter 11.25/page no : 535	
21.	Adaptive array,	No		
22.	Basic principle of antenna Synthesis-	Yes		
23.	Binomial array	Yes		
24.	Review of arrays	No	Chapter 11	
	UNIT III SMALL ANTENNAS			
25.	Half wave dipole antenna	Yes		
26.	radiated fields of short dipole,	Yes	Chapter 6/page no : 238-264	
27.	small loop antenna	Yes		
28.	helical Antenna,	Yes	Chapter 7/page no : 265-338	
29.	Monofilar helix.	Yes	 Chapter 18.5/page no : 824-826	
30.	Multifilar helix.	Yes	Chapter 10:37 page no : 220-235	
31.	Directivity and Design Feature	Yes		
32.	Radiation resistance,	Yes		
33.	Radiated fields and other feature.	Yes		
34.	Numerical tool for antenna analysis	Yes		
35.	Numerical tool for antenna analysis	Yes		
36.	Design Feature	Yes		
	UNIT IV SPECIAL ANTENNAS			
37.	Yagi uda Antenna,– Impedance and antenna measurements;	Yes	Chapter 15.6/page no : 708-710	
38.	Turnstile antenna,	Yes	Chapter 15/page no : 726	
39.	Principle of frequency independent	Yes		
	antennas		Chapter 16.5/page no : 725-26	
40.	Helical antenna,	Yes		
41.	Spiral antenna,	Yes	Chapter 15.3/page no : 69 Chapter 7/page no: 267–309	
42.	Log periodic antennas	Yes		
43.	Modern antennas	Yes		
44.	Re- Active antenna,	Yes		
45.	configurable antenna,	Yes		
46.	Dielectric antennas,	No		
47.	rhombic antenna,	No		
48.	Horn antenna, Reflector antennas and their feed systems, Micro strip antenna,	No	Chapter 13/page no : 624-660	
	UNIT V WAVE PR	OPOGATION		
49.	Ground wave propagation–and Conductivity of ionized gas, Faraday rotation,	No		
50.	Troposphere wave,	Yes		
51.	wave- tilt of the surface wave,	No		
52.	Ionosphere propagation	Yes	A.R.Harish, M.Sachidanada,	

53.	effective permittivity	Yes	"Antennas and Wave
54.	Conductivity of ionized gas,	No	propagation", Oxford University
55.	Reflection – Refraction of waves from ionosphere,	Yes	Press, 2007 Page : 330 - 381
56.	earth magnetic field,	Yes	
57.	regular – irregular variation of lonosphere,	Yes	
58.	Duct propagation,	yes	
59.	Critical frequency and Space	No	
60.	Review of all units	No	

Mapping of Instructional Objectives with Program Outcome

To develop problem solving skills and understanding of circuit theory through the application of techniques and principles of electrical circuit analysis to common circuit problems. This course emphasizes:		Correlates to program outcome		
course emphasizes.	Н	M	L	
1. To develop an understanding of the fundamental laws and elements of antenna	a,c	b,I	I	
2. To develop the ability to apply in design	I,k	a,d,g,h	j	
3. To understand basic design gain and loss	а	a,c,g,i	B,f,j,I	
4. To learn the "antenna parameters"	a,c,i,k	F,k	b,f	
5. Introduce students to different methods involves in analysis in virtual design and actual implementation		a,c,g,i	j,l	

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedule

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Tutorials, which allow for exercises in problem solving and allow time for students to resolve problems in understanding of lecture material.
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

valuation Strategies			
Cycle Test – I	-	10%	
Cycle Test – II	-	10%	
Model Test	-	25%	
Attendance	-	5%	
Final exam	-	50%	
Filial exam	-	50%	
repared by: Dr.E.Kanniga Associa	ite profess	or , Department of ECE	Dated : 10 - 5-201

Addendum

ABET Outcomes expected of graduates of B.Tech / ECE / program by the time that they graduate:

- a) an ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b) an ability to identify, formulate, and solve engineering problems
- c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d)an ability to design and conduct experiments, as well as to analyze and interpret data
- e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f)an ability to apply reasoning informed by a knowledge of contemporary issues
- g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large
- k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engin

Course Teacher	Signature
Dr.E.KANNIGA	
Ms.JASMINE	

Course Coordinator	Academic	: Coordinator	Professor	In-Charge	HOD/ECE
(Dr.E.Kanniga)	()	(Dr.)	(Dr.M.Sundararajan)